263 research outputs found

    Learning Universal Adversarial Perturbations with Generative Models

    Get PDF
    Neural networks are known to be vulnerable to adversarial examples, inputs that have been intentionally perturbed to remain visually similar to the source input, but cause a misclassification. It was recently shown that given a dataset and classifier, there exists so called universal adversarial perturbations, a single perturbation that causes a misclassification when applied to any input. In this work, we introduce universal adversarial networks, a generative network that is capable of fooling a target classifier when it's generated output is added to a clean sample from a dataset. We show that this technique improves on known universal adversarial attacks

    k-fingerprinting: a Robust Scalable Website Fingerprinting Technique

    Get PDF
    Website fingerprinting enables an attacker to infer which web page a client is browsing through encrypted or anonymized network connections. We present a new website fingerprinting technique based on random decision forests and evaluate performance over standard web pages as well as Tor hidden services, on a larger scale than previous works. Our technique, k-fingerprinting, performs better than current state-of-the-art attacks even against website fingerprinting defenses, and we show that it is possible to launch a website fingerprinting attack in the face of a large amount of noisy data. We can correctly determine which of 30 monitored hidden services a client is visiting with 85% true positive rate (TPR), a false positive rate (FPR) as low as 0.02%, from a world size of 100,000 unmonitored web pages. We further show that error rates vary widely between web resources, and thus some patterns of use will be predictably more vulnerable to attack than others.Comment: 17 page

    Towards private and robust machine learning for information security

    Get PDF
    Many problems in information security are pattern recognition problems. For example, determining if a digital communication can be trusted amounts to certifying that the communication does not carry malicious or secret content, which can be distilled into the problem of recognising the difference between benign and malicious content. At a high level, machine learning is the study of how patterns are formed within data, and how learning these patterns generalises beyond the potentially limited data pool at a practitioner’s disposal, and so has become a powerful tool in information security. In this work, we study the benefits machine learning can bring to two problems in information security. Firstly, we show that machine learning can be used to detect which websites are visited by an internet user over an encrypted connection. By analysing timing and packet size information of encrypted network traffic, we train a machine learning model that predicts the target website given a stream of encrypted network traffic, even if browsing is performed over an anonymous communication network. Secondly, in addition to studying how machine learning can be used to design attacks, we study how it can be used to solve the problem of hiding information within a cover medium, such as an image or an audio recording, which is commonly referred to as steganography. How well an algorithm can hide information within a cover medium amounts to how well the algorithm models and exploits areas of redundancy. This can again be reduced to a pattern recognition problem, and so we apply machine learning to design a steganographic algorithm that efficiently hides a secret message with an image. Following this, we proceed with discussions surrounding why machine learning is not a panacea for information security, and can be an attack vector in and of itself. We show that machine learning can leak private and sensitive information about the data it used to learn, and how malicious actors can exploit vulnerabilities in these learning algorithms to compel them to exhibit adversarial behaviours. Finally, we examine the problem of the disconnect between image recognition systems learned by humans and by machine learning models. While human classification of an image is relatively robust to noise, machine learning models do not possess this property. We show how an attacker can cause targeted misclassifications against an entire data distribution by exploiting this property, and go onto introduce a mitigation that ameliorates this undesirable trait of machine learning
    • …
    corecore